
A Hardware Accelerator for 
Computing an Exact Dot 
Product

Jack Koenig, David Biancolin, Jonathan Bachrach, Krste 
Asanović

1



Challenges with Floating Point

Addition and multiplication are not associative

1020 + 1 - 1020 = 0

Multithreaded, not even reproducible!

1020 + 1 - 1020 = 0 or 1

Solutions

● MPFR - Exact but much slower than hardware
● ExactBLAS - Faster than MPFR, still slower than hardware
● ReproBLAS - Fast and reproducible, but not exact

2



Moore’s Law Winding Down

3[Hennessy & Patterson, 2017]



From Moore’s Law to Dark Silicon

● System-on-Chips have billions of 
transistors

● Power density constraints prevent all 
transistors from being used at once

● Accelerators orders-of-magnitude 
more efficient than CPUs

● Can turn off unused specialized units 
to save power

⇒ Use those extra transistors for 

specialized hardware

4NVIDIA Tegra 2

 Specialization is already here!

http://www.anandtech.com/show/4144/lg-optimus-2x-nvidia-tegra-2-review-the-first-dual-core-smartphone/3


Motivation

Why Dot Product?

1) A kernel of many applications
2) Reduction is good candidate for exact representation

Why Exact?

Simplifies error analysis

5



Related Work

● We were heavily influenced by the work 
of Ulrich Kulisch et. al
○ XPA 3233 in 1994
○ PCI-based co-processor
○ 0.8um process

● Recently, Uguen and Dinechin published 
a design-space exploration for 
FPGA-hosted implementations of 
Kulisch’s design

6
[XPA 3233]



Principle of Operation

● Fixed point representation of entire space
○ 1 + 2 ⨉ (2bits(exp) + bits(mant))
○ 2100 bits to represent 1 double-precision number
○ 4200 bits for product of 2 doubles
○ 88 bits to preclude overflow
○ 4288 bits in our complete representation (CR)

● Accumulation
○ Fetch elements of each vector from memory
○ Calculate product of the mantissas and sum of the 

exponents
○ Use sum of exponents to align product of mantissas 

with complete representation
○ Accumulate
○ Propagate carry or borrow if necessary

7[Kulisch 2008]



System Architecture

Rocket Chip Generator

● A RISC-V processor generator
● RISC-V is an open-source, extensible ISA
● Provides Rocket Custom Coprocessor 

Interface (RoCC)

Used in over 12 academic tapeouts and at least 1 
commercial tapeout

8

EOS 22 (2014)



RoCC Accelerator

● Integrated with Rocket Chip via RoCC
○ 5 stage in-order pipeline (Rocket)
○ 32 KiB L1 instruction and data caches
○ 256 KiB L2 cache

● Instructions are fetched by Rocket core 
and forwarded to the accelerator

● Memory interface is parameterized for
○ 64-bit L1 cache interface
○ 128-bit L2 cache interface

9



Instructions

10

Name Description

CLR_CR Clear the complete register

RD_DBL/RD_FLT Round the complete register and return the result to a general-purpose register

LD_CR Loads a complete register from memory

ST_CR Stores the complete register to memory

ADD_CR Adds a complete register in memory to the current value

PRE_DP Initializes vector base address registers

RUN_DP Specifies vector length; instructs accelerator to begin computation



11



Control & Memory Unit

Control Unit

● Decodes instructions
● Rounds complete register

Memory Unit

● Fetches operands from memory and 
re-orders responses to feed to 
datapath

● Parameterized for 64-bit L1 or 128-bit 
L2 interface

12



Segmented Accumulator

13

● Divide complete register into segments
● Each segment gets its own adder
● Accumulates a portion of the product of the mantissas and incoming 

carry/borrow



Centralized Accumulator 

● Uses a single adder
● For double, product of mantissas gives 

104-bit summand
● Read appropriate 4 words from 

accumulator based on sum of 
exponents

● Add summand to lower-order 3 words, 
propagated carry/borrow into 4th

● Stall if carry or borrow propagates 
beyond

● all_ones, all_zeros helps with 
propagation 14



Methodology & Evaluation Overview

Performance evaluation requires both cycles-per-dot-product and cycle time. 

1) Cycles-per-dot-product:
○ Simulate the SoC in RTL simulation, measure execution time in cycles

2) Cycle time: 
○ Push SoC through synthesis and P&R, determine critical path, area

Design space exploration over three parameters:

15

Complete Register 
(Centralized, Segmented)

{C,S}_{L1,L2}_{D,F}

Cache Interface
(L1 = 64 bit, L2 = 128 bit)

Operand Precision
(Double, Float)



Measuring Cycles-Per-Operation
● simulate entire SoC in RTL simulation (Synopsys VCS)
● microbenchmark: random vectors uniformly in the mantissa and exponent spac
● measure cycles-per-element (CPE) of software libraries on a host with similar 

caches:

Software libraries:

● ReproBLAS
● Intel MKL

Host machine: Intel Xeon E5-2667 

● caches: 32 KiB L1 D$, 256 KiB unified L2
● ISA extensions: SSE 4.1, 4.2, AVX 16



Comparison: CPE vs Vector Length 

17

Single Precision Double Precision



VLSI Evaluation

Push the complete SoC through CAD flow, measure cycle time and area.

Flow details:

● Synthesis: Synopsys Design Compiler
● Place & Route: Synopsys IC Compiler
● Technology: TSMC 45nm
● No SRAM compiler

○ generate timing and area models using CACTI 

18



Area Breakdown of Accelerator 

19



Area Breakdown of Core excluding L2

20

1.2
4 ns

1.0
9 ns



Outstanding Questions & Future Work

● How to use effectively in BLAS-2 and BLAS-3 kernels?
○ Must amortize overhead of accelerator setup
○ Cost of saving intermediate exact results is high

● Measure energy and compare to software libraries. 
○ Compare to software libraries. 

21



Conclusion

● Realizable with modest area costs
● Easily saturates available memory bandwidth

Strong case for integration in application specific SoCs; more careful evaluation 
required to motivate integration in general-purpose machines

22



Acknowledgements

● Special thanks to Jim Demmel, William Kahan, Hong Diep Nguyen, and Colin 
Schmidt

● This research was partially funded by DARPA Award Number 
HR0011-12-2-0016 and ASPIRE Lab industrial sponsors and affiliates Intel, 
Google, HPE, Huawei, LGE, Nokia, NVIDIA, Oracle, and Samsung. 

23


