A Number System Approach for Adder Topologies

Álvaro Vázquez

REPSOL-ITMATI

Technological Institute For Industrial Mathematics

Elisardo Antelo

University of Santiago de Compostela

Spain

Introduction

Mathematical Foundation behind the design space of adders.

•Significant role that **Number systems** play in the topology of adders.

Carry Computation

g = xy a = x + y Generate and Alive signals

$$(g,a) \circ (g',a') = (g + ag',aa')$$

Group Generate Alive Signals

$$(g_{i,j}, a_{i,j}) = (g_i, a_i) \circ (g_{i-1}, a_{i-1}) \circ \dots (g_{j+1}, a_{j+1}) \circ (g_j, a_j)$$

 $c_{i+1} = g_{i,j} + a_{i,j} c_j$

$$(c_{i+1}, a_{i,0}) = (g_i, a_i) \circ \dots \circ (g_{1,a_1}) \circ (c_{inp}, 0)$$

Carry to postion i from input carry (gi,0) (cinp=g0)

$$(g_{i,0}, a_{i,0}) = (g_i, a_i) \circ \dots \circ (g_{1,a_1}) \circ (g_0, a_0)$$

Carry trees and Number Systems

Fundamental Question!

Necessary and sufficient conditions that must satisfy a **number system of distances** so that its corresponding tree performs a **correct carry computation**?

•Lets go with Number Systems

.Important: Interval of continous digit positions **[i,0] should map** to an interval of continous distances from the root **[0,i]**.

.Decimation: Given a Number System (Digit set and Weights) \rightarrow Obtain digits to represent each integer in [0,i].

Example of Decimation [0,7]

2² a+2b+c

g7,0

Interesting Number System

•Weights= 2^{j}

- •Digit Set: $0,1/2^{j}$, $2/2^{j}$,..., $(2^{j}-1)/2^{j},1$. •Value of Digit j: $0,1,2,...,(2^{j}-1), 2^{j}$.
- •Example: number of digits b=3
 - Digit 0: weight=1 digit set: 0,1.
 - Digit 1: weight=2 digit set: 0, 1/2, 1.
 - Digit 2: weight=4 digit set: 0, 1/4, 1/2, 3/4,1.
 - Digit 0: value ->0,1.
 - Digit 1: value ->0,1,2.
 - Digit 2: value ->0,1,2,3,4.

Example for First Step of Decimation

Digit 3/4 is possible since it is multiplied by weight 4 (2 = int(levels=log(3)) Number system (as a polynomial): $x2 2^2 + x1 2^1 + x0 2^0$, Digits for x2 (0,3/4) or (0,1). In this case there may be overlap of intervals of dinstances from the root [0,3] and [3,6] 9

Necessary and Sufficient Conditions

• The number sytem should allow the computation of

$$(c_{i+1}, a_{i+1,0}) = (g_i, a_i) \circ \dots \circ (g_{1,a_1}) \circ (c_{inp}, 0)$$

- This requires every term (g,a) to be present, and preserve the order of evaluation.
- Then the number system should allow the representation of [0,i]. with no interval.
- Conditions for decimation:
 - decimation of [a,b]
 - resulting intervals [a,c] and [d,b].
 - previous conditions are verified if during decimation c>=d-1.

Formal Definition of Binary Decimation

Digit selection: Interval [a+2^j s, a+ 2^j s + Lj] -> digit =s

$$\begin{array}{c|c} a+2^{j} \ s \leq a \end{array} & \begin{array}{c} & \end{array} & \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} & \begin{array}{c} s_{1,j}=0 \end{array} & \begin{array}{c} a+2^{j} \ s+Lj \geq b \\ \hline & \\ & \\ & \\ \end{array} & \begin{array}{c} 2^{j} \ s_{2,j}+Lj \geq b-a \end{array} \end{array}$$

Formal Definition of Binary Decimation

 $[a, a+min{Lj, 2^{j}-1}]$ [max{a+ 2^j s_{2,j}, b-2^j +1}, b]

 $\rho = \min\{L_{j, 2j} - 1\} - \max\{2^{j} s_{2,j}, b-a-2^{j} + 1\}$

Overlap

Design of Module T

```
Define Number System: S.
for(i=0 to N-1) { /* For each tree */
  Nd=1; /* Number of intervals to be decimated at each level */
  for(j=[\log_2(N-i)] - 1 to 0) { /* for each level */
    Next Nd=0:
     for(k=0 to Nd-1) { /* for every interval at level j */
         Basic_Decimation_Step {
            Input_interval: [a, b] (remainder interval [0, h = b - a])
            Def._Sel_Remainder_Intervals: [2^j s, 2^j s + L_j] \rightarrow \text{digit=s}
            Determine_Valid_Digits(); /* Possible values of s_{2,i} */
            s_{2,j}=M_{j,i+a} if M_{j,i+a} \neq 0 else Select_Digit();
            /* Select taking into account previous decimations
            /* and other design criteria */
            M_{j,i+a} = s_{2,j}; /* matrix update */
            Obtain Two Remainder_Intervals();
           /* Intervals [0, \min\{L_j, 2^j - 1\}] and
            [0, \max\{h - 2^j s_{2,j}, 2^j - 1\}] */
           /* Adjust the intervals to the desired redundancy */
            Reduce Redundancy(\rho, f)
            Check fanout(flag); /* if flag=0, everything is ok */
            if (flag=1) { Restore();
                /* Restore old M_{j,i+a} and set s_{2,j} not valid */
                Go to Determine_Valid_Digits();
                /* repeat selection process */ }
            Next Nd=Next Nd+ no of new intervals;
     Nd=Next_Nd;
}}
```

Example of a Process of Making a Desing Using Our Method

Some Cases of Interest for Number System Sr

 $S_{2,j} = 1 - \lambda / 2^{j}$ (3)

 λ is the bit complement of the k least significant bits of N-(i+a) at level j (for gi,0, input interval [a b]).

Adders proosed in [4] \rightarrow Mask for selection using (3)	
$[1,1,1,1] \rightarrow [0,0,0,0]; [2,1,1,1] \rightarrow [1,0,0,0]; [2,2,1,1] \rightarrow [1,1,0,0]; [2,2,2,1] \rightarrow [1,1,1,1]; [4,1,1,1] \rightarrow [2,0,0,0]; [2,2,1,1] \rightarrow [1,1,0,0]; [2,2,2,1] \rightarrow [1,1,1,1]; [4,1,1,1] \rightarrow [2,0,0,0]; [2,2,1,1] \rightarrow [1,1,0,0]; [2,2,2,1] \rightarrow [1,1,1,1]; [4,1,1,1] \rightarrow [2,0,0,0]; [2,2,1,1] \rightarrow [1,1,0,0]; [2,2,2,1] \rightarrow [1,1,1,1]; [4,1,1,1] \rightarrow [2,0,0,0]; [2,2,1,1] \rightarrow [1,1,0,0]; [2,2,2,1] \rightarrow [1,1,1,1]; [4,1,1,1] \rightarrow [2,0,0,0]; [2,2,1,1] \rightarrow [1,1,0,0]; [2,2,1,1] \rightarrow [1,1,0,0]; [2,2,1,1] \rightarrow [1,1,0,0]; [2,2,2,1] \rightarrow [1,1,1,1]; [4,1,1,1] \rightarrow [2,0,0,0]; [2,2,1,1] \rightarrow [1,1,0,0]; [2,2,1,0] \rightarrow [1,1,0,0]; [2,2,1,0]; [2,2,1,0]; [2,2,1,0]; [2,2,1,0]; [2,2,1,0]; [2,2,1,0]; [2,2,1,0]; [2,2,1,0]; [2,2,1,0]; [2,2,1,0]; [2$];
$[4,2,1,1] \rightarrow [2,1,0,0]; [4,2,2,1] \rightarrow [2,1,1,1]; [4,4,1,1] \rightarrow [2,2,0,0]; [4,4,2,1] \rightarrow [2,2,1,1]; [8,1,1,1] \rightarrow [3,0,0,0]; [4,2,2,1] \rightarrow [2,2,1,1]; [8,1,1,1] \rightarrow [3,0,0,0]; [4,2,2,1] \rightarrow [2,2,1,1]; [4,2,2] \rightarrow [2,2,1,1]; [4,2,2] \rightarrow [2,2,1] \rightarrow [2,2,1]; [4,2,2] \rightarrow [2,2,1]; [4,2,2] \rightarrow [2,2,1]; [4,2,2] \rightarrow [2,2,1]; [4,2,2] \rightarrow [2,2,1] \rightarrow [2,2,1]; [4,2,2] \rightarrow [2,2,2] \rightarrow [2,2] \rightarrow $];
$[8,2,1,1] \rightarrow [3,1,0,0]; [8,2,2,1] \rightarrow [3,1,1,1]; [8,4,1,1] \rightarrow [3,2,0,0]; [8,4,2,1] \rightarrow [3,2,1,1]$	

[4] Knowles Adders and N=16

Relation with Burgess Adders [21]

Span(j): introduced to determine whether idempotency is present in a prefix graph.

Relation to our work:

$$span(j) = \min\{s_{2,j}\} \times 2^j$$
$$s_{2,j} \neq 0$$

Number System Parameters of Intel Adder Architecture [20]

17

Number System Parameters of Intel Adder Architecture [20]

Digits and	Level 0: $N = 9$; $r_i = 2^4$ $(1 \le i \le 8)$; $r_9 = 2^{32}$
hierarchy levels	Level 1: $r_{i,j} = 2 \ (1 \le j \le 4); \ r_{9,j} = 2^4 \ (1 \le j \le 8)$ Level 2: $r_{9,j,k} = 2 \ (1 \le k \le 4);$
T Modules Number System: S_r .	$MT = MT_9 = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 \\ 1/2 & 0 & 0 & 1 & 1/2 & 0 \\ 3/4 & 2/4 & 1/4 & 0 & 0 & 0 \end{bmatrix}; MT_i = MT_{9,j} = \begin{bmatrix} 0 & 1 \\ 1/2 & 0 \end{bmatrix}$
G Modules*	$G_i: \text{ inputs} \to (g_{i,j}, a_{i,j}) \text{ (bit level signals); Function} \to \text{as a T module with matrix} \begin{bmatrix} 1 & 1 \\ 10 & 1 \end{bmatrix}$
	$G_{9,j}$: same as G_i ; $G_{i,j}$: $(g_{i,j}, a_{i,j})$ pairs (bit level signals)
	$G_{9,j,k}$: $(g_{9,j,k}, a_{9,j,k})$ pairs (bit level signals)
Coding of carries	$c_{i,j}^1 \rightarrow \text{conditional carries}; c_i^0 \rightarrow \text{explicit carry}; c_{9,j,k}^2 \rightarrow \text{conditional carries}; c_{9,j}^0 \rightarrow \text{explicit carry}$
Coding of	$s_{i,j}^1 \rightarrow$ propagate signal; $s_{i,j}^0 \rightarrow$ conditional pseudosums;
pseudosums	$s_{9,j,k}^{2^{\prime}} \rightarrow \text{propagate signal}; s_{i,j,k}^{1} \rightarrow \text{conditional pseudosums}$

* G1 has a different design than the other G_i , using a 3-ary tree to accommodate the c_{in} .

Conclusions

Presented and adder model that allows design and specification on adders based on Number systems.

Explored the mathematical foundations behind the trees for carry computations.

We propose a method to design adders based on finding integer representations on a given number system.

We showed how our model is applied to many existing adder designs.

Our work is a step forward to the design of adders even at a higher algorithmic level than it was done up to this time.