Multiple precision floating point arithmetic
on SIMD processors

Joris van der Hoeven

CNRS, Ecole polytechnique

London, July 24, 2017
http://www. TeXvcs . org

The challenge: fast multiple precision arithmetic for scientific computation

Theoretical efficiency of multiple precision floating point arithmetic
e Mainly boils down to the complexity M(k) of k-“word” multiplication.

e For small k, we have M(k) = a k? for some constant «.

o For large k, we have M(k) = O(k log k 8'°8"%): Harvey—vdH-Lecerf, J. of Complexity 2016.

e For 10 < k <1000, intermediate regimes apply: Karatsuba, Toom—Cook, etc.

The challenge: fast multiple precision arithmetic for scientific computation

Theoretical efficiency of multiple precision floating point arithmetic
e Mainly boils down to the complexity M(k) of k-“word” multiplication.

e For small k, we have M(k) = a k? for some constant «.

o For large k, we have M(k) = O(k log k 8'°8"%): Harvey—vdH-Lecerf, J. of Complexity 2016.

e For 10 < k <1000, intermediate regimes apply: Karatsuba, Toom—Cook, etc.

How does this translate in practice?

The challenge: fast multiple precision arithmetic for scientific computation

Theoretical efficiency of multiple precision floating point arithmetic
e Mainly boils down to the complexity M(k) of k-“word” multiplication.

e For small k, we have M(k) = a k? for some constant «.

o For large k, we have M(k) = O(k log k 8'°8"%): Harvey—vdH-Lecerf, J. of Complexity 2016.

e For 10 < k <1000, intermediate regimes apply: Karatsuba, Toom—Cook, etc.

How does this translate in practice?

e How to minimize « for small k<107

The challenge: fast multiple precision arithmetic for scientific computation

Theoretical efficiency of multiple precision floating point arithmetic
e Mainly boils down to the complexity M(k) of k-“word” multiplication.

e For small k, we have M(k) = a k? for some constant «.

o For large k, we have M(k) = O(k log k 8'°8"%): Harvey—vdH-Lecerf, J. of Complexity 2016.

e For 10 < k <1000, intermediate regimes apply: Karatsuba, Toom—Cook, etc.

How does this translate in practice?
e How to minimize « for small k<107

e How does o depend on the architecture?

The challenge: fast multiple precision arithmetic for scientific computation

Theoretical efficiency of multiple precision floating point arithmetic
e Mainly boils down to the complexity M(k) of k-“word” multiplication.
e For small k, we have M(k) = a k? for some constant «.

o For large k, we have M(k) = O(k log k 8'°8"%): Harvey—vdH-Lecerf, J. of Complexity 2016.

e For 10 < k <1000, intermediate regimes apply: Karatsuba, Toom—Cook, etc.

How does this translate in practice?
e How to minimize « for small k<107
e How does o depend on the architecture?

e What about SIMD-style vectorization?

The challenge: fast multiple precision arithmetic for scientific computation

Theoretical efficiency of multiple precision floating point arithmetic

Mainly boils down to the complexity M(k) of k-"“word” multiplication.
For small k, we have M(k)~ o k? for some constant «.

For large k, we have M(k) = O(k log k 8'°8"%): Harvey—vdH-Lecerf, J. of Complexity 2016.

For 10 < k < 1000, intermediate regimes apply: Karatsuba, Toom—Cook, etc.

How does this translate in practice?

How to minimize « for small k <107
How does o depend on the architecture?
What about SIMD-style vectorization?

To what extent do additions and subtractions matter?

Modern architectures 3/12

The issues

e What are the available word sizes 11 in bits?

Modern architectures 3/12

The issues
e What are the available word sizes 11 in bits?

e What is the available SIMD width w for the best word size 117

Modern architectures 3/12

The issues
e What are the available word sizes 11 in bits?

e What is the available SIMD width w for the best word size 117

Efficiency o< p?w

Modern architectures 3/12

The issues

e What are the available word sizes 11 in bits?

e What is the available SIMD width w for the best word size 117

Efficiency o< p?w

e Is (efficient) hardware integer arithmetic available? If so,

Efficiencyy ~ <%)2 Efficiencyr =~ 1.5 Efficiencyp.

Modern architectures 3/12

The issues
e What are the available word sizes 11 in bits?

e What is the available SIMD width w for the best word size 117
Efficiency o< p?w

e Is (efficient) hardware integer arithmetic available? If so,

Efficiencyy ~ <%)2 Efficiencyr =~ 1.5 Efficiencyp.
Currently
e =53 and w =4 on AVX2-enabled processors. No efficient 64-bit integer arithmetic.
e =24 and 16 < w <64 on cheap GPUs. No efficient 32-bit integer arithmetic.

e ;=53 and 16 <w <64 on expensive GPUs. No efficient 64-bit integer arithmetic.
e FGPAs: not considered here.

Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F

Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions
e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F

e Exploit error-free transformations when doing operations

Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—-Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67

Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—-Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67

Separate treatment of mantissas and exponents

e Standard representation x = m2° with m=mg+ my2 P+ -+ my_, 2~ k=1p

Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—-Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67

Separate treatment of mantissas and exponents
e Standard representation x = m2€ with m=mg+ mi2 P+ -+ my_1 p—(k=1)p

e Fixed-point arithmetic operations on the mantissas m

Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—-Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67

Separate treatment of mantissas and exponents
e Standard representation x = m2¢ with m=mg+my2 P+ -+ my_1 2 k=1Dp
e Fixed-point arithmetic operations on the mantissas m

e \Very efficient for large k (cf. GMP and MPFR libraries)

Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—-Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67

Separate treatment of mantissas and exponents

e Standard representation x = m2¢ with m=mg+my2 P+ -+ my_1 2 k=1Dp
e Fixed-point arithmetic operations on the mantissas m

e \Very efficient for large k (cf. GMP and MPFR libraries)

e However: GMP and MPFR are currently not vectorized and very inefficient for small k

Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions
e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—-Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67

Separate treatment of mantissas and exponents

e Standard representation x = m2¢ with m=mg+my2 P+ -+ my_1 2 k=1Dp
e Fixed-point arithmetic operations on the mantissas m

e \Very efficient for large k (cf. GMP and MPFR libraries)

e However: GMP and MPFR are currently not vectorized and very inefficient for small k

e Efficiency for small and medium k?

Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67

Separate treatment of mantissas and exponents

e Standard representation x = m2¢ with m=mg+my2 P+ -+ my_1 2 (k=1Dp

e Fixed-point arithmetic operations on the mantissas m

e \Very efficient for large k (cf. GMP and MPFR libraries)

e However: GMP and MPFR are currently not vectorized and very inefficient for small k
e Efficiency for small and medium k7

e SIMD-style vectorization?

Fixed-point arithmetic 5/12

|dea (vdH-Lecerf, ARITH 2015): use redundant representation with “nail bits":

x = m?2°

m = mpg+m2 P+ +me_12 k-Dp
p = p—29

0 = 4, suitable number of “nail bits"
m;, € Z2°P

Thus: [m| <2% and me Z 2P,

1 2—P 2—2p 2—|3p
| | |
i | |
my2 P :) : P :
| | i
my2 2P | | 0 | p
| | |

(q\]
Al
S~
©

Efficient non-normalized arithmetic ...

... followed by efficient carry-normalization

i e
myg | § | p | |
| | |
my 2P :) : P :
| | | |
mp272P | 0 | P g
| | | |

... followed by efficient carry-normalization

O T
myg | § | p | |
J— | I
mi 2°P | + | P |
| | T
my2 2P | | +] P
|

... followed by efficient carry-normalization

mo)

my2— P

mo D—2p

... followed by efficient carry-normalization

mo)

my2— P

mo 2—2p

Operation counts

e Multiplication: 5 (g) +1 :gk2 — g k+1

... followed by efficient carry-normalization

mo)

my2— P

mo 2—2p

Operation counts
e Multiplication: 5 (g) +1= g k2 — g k+1

e Carry-normalization: 4 k — 4

... followed by efficient carry-normalization

mo)

my2— P

mo 2—2p

Operation counts
e Multiplication: 5(§>+1:gk2—gk+1
e Carry-normalization: 4 k — 4

e Total: gk2+gk—3

... followed by efficient carry-normalization

mo)

my2— P

mo 2—2p

Operation counts
e Multiplication: 5(§>+1:gk2—gk+1
e Carry-normalization: 4 k — 4
549 3
° TotaI.Ek +5k—3

e Remember: §k2+%k+67

Back to floating point arithmetic 8/12

Main problem: putting arguments under a common exponent (e.g. 0.7 x 277 +0.8 x 2712)

Back to floating point arithmetic 8/12

Main problem: putting arguments under a common exponent (e.g. 0.7 x 277 +0.8 x 2712)

~» how to shift mantissas efficiently? (e.g. 0.8 x2712=0.025 x 27)

Back to floating point arithmetic 8/12

Main problem: putting arguments under a common exponent (e.g. 0.7 x 277 +0.8 x 2712)
~» how to shift mantissas efficiently? (e.g. 0.8 x2712=0.025 x 27)

~ how to perform “dot normalization”?

Back to floating point arithmetic 8/12

Main problem: putting arguments under a common exponent (e.g. 0.7 x 277 +0.8 x 2712)
~» how to shift mantissas efficiently? (e.g. 0.8 x2712=0.025 x 27)

~ how to perform “dot normalization”?

Decomposition of a shift by s bits

Back to floating point arithmetic 8/12

Main problem: putting arguments under a common exponent (e.g. 0.7 x 277 +0.8 x 2712)
~» how to shift mantissas efficiently? (e.g. 0.8 x2712=0.025 x 27)

~ how to perform “dot normalization”?

Decomposition of a shift by s bits

e as a long shift by o =|s/p| words

Back to floating point arithmetic 8/12

Main problem: putting arguments under a common exponent (e.g. 0.7 x 277 +0.8 x 2712)
~» how to shift mantissas efficiently? (e.g. 0.8 x2712=0.025 x 27)

~ how to perform “dot normalization”?

Decomposition of a shift by s bits
e as a long shift by o =|s/p| words

e and a short shift by s"=s — o p < p bits

Back to floating point arithmetic 8/12

Main problem: putting arguments under a common exponent (e.g. 0.7 x 277 +0.8 x 2712)
~» how to shift mantissas efficiently? (e.g. 0.8 x2712=0.025 x 27)

~ how to perform “dot normalization”?

Decomposition of a shift by s bits
e as a long shift by o =|s/p| words
e and a short shift by s"=s — o p < p bits

e This should be done using SIMD vector instructions

Back to floating point arithmetic 8/12

Main problem: putting arguments under a common exponent (e.g. 0.7 x 277 +0.8 x 2712)
~» how to shift mantissas efficiently? (e.g. 0.8 x2712=0.025 x 27)

~ how to perform “dot normalization”?

Decomposition of a shift by s bits
e as a long shift by o =|s/p| words
e and a short shift by s"=s — o p < p bits

e This should be done using SIMD vector instructions

Main design decisions to be made

e Work with arbitrary exponents (4 /la MPFR) or multiples of p (a la GMP)?

Back to floating point arithmetic 8/12

Main problem: putting arguments under a common exponent (e.g. 0.7 x 277 +0.8 x 2712)
~» how to shift mantissas efficiently? (e.g. 0.8 x2712=0.025 x 27)

~ how to perform “dot normalization”?

Decomposition of a shift by s bits
e as a long shift by o =|s/p| words
e and a short shift by s"=s — o p < p bits

e This should be done using SIMD vector instructions

Main design decisions to be made

e Work with arbitrary exponents (4 /la MPFR) or multiples of p (a la GMP)?

e Numbers in an SIMD vector share the same exponent or not?

long SIMD shifts 9/12

Idea: any shift by 0 =o¢+ 012+ - +0¢_1 271 words with o; € {0,1}
decomposes as / special shifts by ;2" € {0,2'} words (done using blend instruction)

Shlft by O 01 02

Moo | Mo1 | Mo2 | Mo3 | Moa | Mos | Moe | Moz 3 1110
mio | M1 | Mo | M3 | M| mMs| M| My 2 0(1]0
Mao | Ma1 | Moo | Ma3 | Mag | Mas | Mag | Moy 5 1101
mzo | M31 | M3o | M33 | M34a | M35 | M3g | M37 11 1111
My | Ma1 | Mao | Ma3 | Maa | Mas | My | Maz 0 0({0|0
Mso | Ms1 | Mso | Ms3 | Msa | Mss | Msg | Ms7 4 0(0]1
Meo | Me1 | Me2 | M3 | Mea | Mes5 | Mo | Me 7 4 0(0]1
mzo | Mz1 | Myo | Mz3 | M7a | Mzs | Mmrg | My 7 6 0(1]1

Operation count: k log k

long SIMD shifts 9/12

Idea: any shift by 0 =o¢+ 012+ - +0¢_1 271 words with o; € {0,1}
decomposes as / special shifts by ;2" € {0,2'} words (done using blend instruction)

Shlft by O 01 02

0 Moo | Mo1 | Mo2 | Mo3 | Moa | Mos | Mo 3 1110
mio | M1 | M2 | M3 | Ma| ms| me| M7 2 0(1]0
0 Myo | M1 | Moo | Ma3 | Mag | Mas | Mo 5 1101
0 m3o | M1 | M3o | M33 | M3a | M35 | M35 11 1111
My | Ma1 | Mao | Ma3 | Maa | Mas | My | Maz 0 0({0|0
Mso | Ms1 | M52 | Ms3 | M54 | Mss | Msg | Ms7 4 0]0|1
Meo | Me1 | Me2 | Me3 | Mea | Mes | Mg | Me7 4 0101
mzo | Mz1 | Myo | Mz3 | M7a | Mzs | Mmrg | My 7 6 0(1]1

Operation count: k log k

long SIMD shifts 9/12

Idea: any shift by 0 =o¢+ 012+ - +0¢_1 271 words with o; € {0,1}
decomposes as / special shifts by ;2" € {0,2'} words (done using blend instruction)

Shlft by O 01 02

0 0 0 mo.o mo 1 mo 2 mo,3 mo. 4 3 1110
0 0 mio | M1 | Mo | M3 | Mg | M5 2 0(1(0
0 Mao | Ma1 | Moo | M3 | Mag | Mas | Mo 5 1101
0 0 0 ms o ms 1 ms 2 ms 3 ms 4 11 11111
My | Ma1 | Mao | Ma3 | Maa | Mas | My | Maz 0 0({0|0
mso | Ms1 | M52 | Ms3 | M54 | M55 | M5 | Ms7 4 0101
Meo | Me1 | Me2 | M3 | Mea | Mes5 | Mo | Me 7 4 0(0|1
0 0 mzo | Mz1 | Myo | M3 | M7a | M7 6 0(1]1

Operation count: k log k

long SIMD shifts 9/12

Idea: any shift by 0 =o¢+ 012+ - +0¢_1 271 words with o; € {0,1}
decomposes as / special shifts by ;2" € {0,2'} words (done using blend instruction)

Shlft by O 01 02

0 0 0 Moo | Mo,1 | Mo2 | Mo3 | Mo.a 3 1110
0 0 mio | M1 | Mmoo | mMm3| mMal|l mgs 2 0(1(0
0 0 0 0 0 Mmoo | Ma1 | Moo 5 1{0]1
0 0 0 0 0 0 0 m3.o 11 1111
My | Ma1 | Mao | Ma3 | Maa | Mas | My | Maz 0 0({0|0
0 0 0 0 mso | Mms1 | M52 | Ms3 4 0[]0 (1
0 0 0 0 Meo | Me1 | Me2 | Me3 4 0|01
0 1 0] 0 01 0 0 [molma 6 J0[1]1

Operation count: k log k

long SIMD shifts 9/12

Idea: any shift by 0 =o¢+ 012+ - +0¢_1 271 words with o; € {0,1}
decomposes as / special shifts by ;2" € {0,2'} words (done using blend instruction)

Shlft by O 01 02

0 0 0 Moo | Mo,1 | Mo2 | Mo3 | Mo.a 3 1110
0 0 mio | M1 | Mmoo | mMm3| mMal|l mgs 2 0(1(0
0 0 0 0 0 Mmyo | Ma1 | Moo 5 1{0]1
0 0 0 0 0 0 0 ms.o 11 1111
My | Ma1 | Mao | Ma3 | Maa | Mas | My | Maz 0 0({0|0
0 0 0 0 mso | ms1 | M5 | Ms3 4 0[]0 (1
0 0 0 0 Meo | Me,1 | Me2 | Me3 4 0|01
0 1 0] 0] 01 01 0 [molma 6 Jo[1]1

Operation count: k log k

short SIMD shifts 10/12

Similar to carry-normalization

Operation count: 4 k —1

short SIMD shifts 10/12

Similar to carry-normalization

Operation count: 4 k —1

Note
One addition r = x + y requires
e One general right shift for x (put under common exponent)

e One general right shift for y (put under common exponent)

e One fixed-point addition

e One general left shift for r (dot normalization)

Operation counts 11/12

Base 2

k 2| 3| 4| 5| 6 7| 8| 9| 10| 11| 12
Individual exponents| 51| 841|108 |150|177|204|231|288|318| 348 | 378
Shared exponents 55| 791|103 (127 |151|175|199 (223|247 | 271 | 295
Individual exponents| 31| 35| 54| 78|107|141|180|224|273| 327 | 386

" I'Shared exponents 32| 36| 55| 79108 (142|181 (225|274 | 328 | 387
x | FP expansions 138193261 342|436 [543 |663|796|942 (1101|1273
Base 2°

k—1 2| 3| 4| 5| 6 7| 8| 9| 10 11 12
n Individual exponents| 31| 49| 67| 92|107|122|147|183|201| 219 | 237

Shared exponents 31| 43| 55| 67| 79| 91|103|115|127| 139| 151
Individual exponents| 40| 61| 87|118|154|195|241|292|348| 409 | 475
Shared exponents 41| 62| 88|119|155(196|242|293 (349 | 410| 476
x | FP expansions 138 193|261 [342|436 [543 663|796 |942 (1101|1273

Conclusion and perspectives 12/12

Conclusion
e ARITH 2015: our multiple precision arithmetic is very efficient for fixed-point arithmetic
We were able to achieve ov <2 for practical FFT computations

This was really our best case situation

Conclusion and perspectives 12/12

Conclusion
e ARITH 2015: our multiple precision arithmetic is very efficient for fixed-point arithmetic
We were able to achieve ov <2 for practical FFT computations
This was really our best case situation
e ARITH 2017: we expect our approach to outperform floating point expansions for k> 5
This holds for any of the known approaches: Priest, Bailey, Muller—Popescu-Tang, ...

Although this is really our worst case situation

Conclusion and perspectives 12/12

Conclusion
e ARITH 2015: our multiple precision arithmetic is very efficient for fixed-point arithmetic
We were able to achieve ov <2 for practical FFT computations

This was really our best case situation
e ARITH 2017: we expect our approach to outperform floating point expansions for k> 5
This holds for any of the known approaches: Priest, Bailey, Muller—Popescu-Tang, ...

Although this is really our worst case situation

Perspectives

e To make better use of our arithmetic, one should implement dedicated functions for
o Sums x; + - + x; of several numbers
o Important specific operations: FFT, matrix multiplication, etc.
o Etc.

e Can compilers use such optimized routines automatically when possible?

