
Multiple precision �oating point arithmetic
on SIMD processors

Joris van der Hoeven

CNRS, École polytechnique

London, July 24, 2017
http://www.TeXmacs.org



The challenge: fast multiple precision arithmetic for scienti�c computation 2/12

1 2 3 4 5 6 7 8 9 10 11 12

Theoretical e�ciency of multiple precision �oating point arithmetic

� Mainly boils down to the complexity M(k) of k-�word� multiplication.

� For small k, we have M(k)�� k2 for some constant �.

� For large k, we have M(k)=O(k log k 8log
� k): Harvey�vdH�Lecerf, J. of Complexity 2016.

� For 10/ k / 1000, intermediate regimes apply: Karatsuba, Toom�Cook, etc.



The challenge: fast multiple precision arithmetic for scienti�c computation 2/12

1 2 3 4 5 6 7 8 9 10 11 12

Theoretical e�ciency of multiple precision �oating point arithmetic

� Mainly boils down to the complexity M(k) of k-�word� multiplication.

� For small k, we have M(k)�� k2 for some constant �.

� For large k, we have M(k)=O(k log k 8log
� k): Harvey�vdH�Lecerf, J. of Complexity 2016.

� For 10/ k / 1000, intermediate regimes apply: Karatsuba, Toom�Cook, etc.

How does this translate in practice?



The challenge: fast multiple precision arithmetic for scienti�c computation 2/12

1 2 3 4 5 6 7 8 9 10 11 12

Theoretical e�ciency of multiple precision �oating point arithmetic

� Mainly boils down to the complexity M(k) of k-�word� multiplication.

� For small k, we have M(k)�� k2 for some constant �.

� For large k, we have M(k)=O(k log k 8log
� k): Harvey�vdH�Lecerf, J. of Complexity 2016.

� For 10/ k / 1000, intermediate regimes apply: Karatsuba, Toom�Cook, etc.

How does this translate in practice?

� How to minimize � for small k / 10?



The challenge: fast multiple precision arithmetic for scienti�c computation 2/12

1 2 3 4 5 6 7 8 9 10 11 12

Theoretical e�ciency of multiple precision �oating point arithmetic

� Mainly boils down to the complexity M(k) of k-�word� multiplication.

� For small k, we have M(k)�� k2 for some constant �.

� For large k, we have M(k)=O(k log k 8log
� k): Harvey�vdH�Lecerf, J. of Complexity 2016.

� For 10/ k / 1000, intermediate regimes apply: Karatsuba, Toom�Cook, etc.

How does this translate in practice?

� How to minimize � for small k / 10?

� How does � depend on the architecture?



The challenge: fast multiple precision arithmetic for scienti�c computation 2/12

1 2 3 4 5 6 7 8 9 10 11 12

Theoretical e�ciency of multiple precision �oating point arithmetic

� Mainly boils down to the complexity M(k) of k-�word� multiplication.

� For small k, we have M(k)�� k2 for some constant �.

� For large k, we have M(k)=O(k log k 8log
� k): Harvey�vdH�Lecerf, J. of Complexity 2016.

� For 10/ k / 1000, intermediate regimes apply: Karatsuba, Toom�Cook, etc.

How does this translate in practice?

� How to minimize � for small k / 10?

� How does � depend on the architecture?

� What about SIMD-style vectorization?



The challenge: fast multiple precision arithmetic for scienti�c computation 2/12

1 2 3 4 5 6 7 8 9 10 11 12

Theoretical e�ciency of multiple precision �oating point arithmetic

� Mainly boils down to the complexity M(k) of k-�word� multiplication.

� For small k, we have M(k)�� k2 for some constant �.

� For large k, we have M(k)=O(k log k 8log
� k): Harvey�vdH�Lecerf, J. of Complexity 2016.

� For 10/ k / 1000, intermediate regimes apply: Karatsuba, Toom�Cook, etc.

How does this translate in practice?

� How to minimize � for small k / 10?

� How does � depend on the architecture?

� What about SIMD-style vectorization?

� To what extent do additions and subtractions matter?



Modern architectures 3/12

1 2 3 4 5 6 7 8 9 10 11 12

The issues

� What are the available word sizes � in bits?



Modern architectures 3/12

1 2 3 4 5 6 7 8 9 10 11 12

The issues

� What are the available word sizes � in bits?

� What is the available SIMD width w for the best word size �?



Modern architectures 3/12

1 2 3 4 5 6 7 8 9 10 11 12

The issues

� What are the available word sizes � in bits?

� What is the available SIMD width w for the best word size �?

E�ciency / �2w



Modern architectures 3/12

1 2 3 4 5 6 7 8 9 10 11 12

The issues

� What are the available word sizes � in bits?

� What is the available SIMD width w for the best word size �?

E�ciency / �2w

� Is (e�cient) hardware integer arithmetic available? If so,

E�ciencyZ �
�

64
53

�
2
E�ciencyF � 1.5 E�ciencyF:



Modern architectures 3/12

1 2 3 4 5 6 7 8 9 10 11 12

The issues

� What are the available word sizes � in bits?

� What is the available SIMD width w for the best word size �?

E�ciency / �2w

� Is (e�cient) hardware integer arithmetic available? If so,

E�ciencyZ �
�

64
53

�
2
E�ciencyF � 1.5 E�ciencyF:

Currently

� �= 53 and w =4 on AVX2-enabled processors. No e�cient 64-bit integer arithmetic.

� �= 24 and 166w 6 64 on cheap GPUs. No e�cient 32-bit integer arithmetic.

� �= 53 and 166w 6 64 on expensive GPUs. No e�cient 64-bit integer arithmetic.

� FGPAs: not considered here.



Approaches for multiple precision �oating point arithmetic 4/12

1 2 3 4 5 6 7 8 9 10 11 12

Notation: F is the set of hardware �oating point numbers



Approaches for multiple precision �oating point arithmetic 4/12

1 2 3 4 5 6 7 8 9 10 11 12

Notation: F is the set of hardware �oating point numbers

Floating point expansions

� Based on an exact representation x = x1+ ���+ xk with x1; :::; xk 2F



Approaches for multiple precision �oating point arithmetic 4/12

1 2 3 4 5 6 7 8 9 10 11 12

Notation: F is the set of hardware �oating point numbers

Floating point expansions

� Based on an exact representation x = x1+ ���+ xk with x1; :::; xk 2F

� Exploit error-free transformations when doing operations



Approaches for multiple precision �oating point arithmetic 4/12

1 2 3 4 5 6 7 8 9 10 11 12

Notation: F is the set of hardware �oating point numbers

Floating point expansions

� Based on an exact representation x = x1+ ���+ xk with x1; :::; xk 2F

� Exploit error-free transformations when doing operations

� E�cient for k =2, k =3, and k =4 (cf. QD library by Bailey et al.)



Approaches for multiple precision �oating point arithmetic 4/12

1 2 3 4 5 6 7 8 9 10 11 12

Notation: F is the set of hardware �oating point numbers

Floating point expansions

� Based on an exact representation x = x1+ ���+ xk with x1; :::; xk 2F

� Exploit error-free transformations when doing operations

� E�cient for k =2, k =3, and k =4 (cf. QD library by Bailey et al.)

� Muller�Popescu�Tang, ARITH 2016, �op-count� M(k)6 13
2
k2+ 45

2
k + 67



Approaches for multiple precision �oating point arithmetic 4/12

1 2 3 4 5 6 7 8 9 10 11 12

Notation: F is the set of hardware �oating point numbers

Floating point expansions

� Based on an exact representation x = x1+ ���+ xk with x1; :::; xk 2F

� Exploit error-free transformations when doing operations

� E�cient for k =2, k =3, and k =4 (cf. QD library by Bailey et al.)

� Muller�Popescu�Tang, ARITH 2016, �op-count� M(k)6 13
2
k2+ 45

2
k + 67

Separate treatment of mantissas and exponents

� Standard representation x =m 2e with m=m0+m1 2
¡p + ���+mk¡1 2

¡(k¡1)p



Approaches for multiple precision �oating point arithmetic 4/12

1 2 3 4 5 6 7 8 9 10 11 12

Notation: F is the set of hardware �oating point numbers

Floating point expansions

� Based on an exact representation x = x1+ ���+ xk with x1; :::; xk 2F

� Exploit error-free transformations when doing operations

� E�cient for k =2, k =3, and k =4 (cf. QD library by Bailey et al.)

� Muller�Popescu�Tang, ARITH 2016, �op-count� M(k)6 13
2
k2+ 45

2
k + 67

Separate treatment of mantissas and exponents

� Standard representation x =m 2e with m=m0+m1 2
¡p + ���+mk¡1 2

¡(k¡1)p

� Fixed-point arithmetic operations on the mantissas m



Approaches for multiple precision �oating point arithmetic 4/12

1 2 3 4 5 6 7 8 9 10 11 12

Notation: F is the set of hardware �oating point numbers

Floating point expansions

� Based on an exact representation x = x1+ ���+ xk with x1; :::; xk 2F

� Exploit error-free transformations when doing operations

� E�cient for k =2, k =3, and k =4 (cf. QD library by Bailey et al.)

� Muller�Popescu�Tang, ARITH 2016, �op-count� M(k)6 13
2
k2+ 45

2
k + 67

Separate treatment of mantissas and exponents

� Standard representation x =m 2e with m=m0+m1 2
¡p + ���+mk¡1 2

¡(k¡1)p

� Fixed-point arithmetic operations on the mantissas m

� Very e�cient for large k (cf. GMP and MPFR libraries)



Approaches for multiple precision �oating point arithmetic 4/12

1 2 3 4 5 6 7 8 9 10 11 12

Notation: F is the set of hardware �oating point numbers

Floating point expansions

� Based on an exact representation x = x1+ ���+ xk with x1; :::; xk 2F

� Exploit error-free transformations when doing operations

� E�cient for k =2, k =3, and k =4 (cf. QD library by Bailey et al.)

� Muller�Popescu�Tang, ARITH 2016, �op-count� M(k)6 13
2
k2+ 45

2
k + 67

Separate treatment of mantissas and exponents

� Standard representation x =m 2e with m=m0+m1 2
¡p + ���+mk¡1 2

¡(k¡1)p

� Fixed-point arithmetic operations on the mantissas m

� Very e�cient for large k (cf. GMP and MPFR libraries)

� However: GMP and MPFR are currently not vectorized and very ine�cient for small k



Approaches for multiple precision �oating point arithmetic 4/12

1 2 3 4 5 6 7 8 9 10 11 12

Notation: F is the set of hardware �oating point numbers

Floating point expansions

� Based on an exact representation x = x1+ ���+ xk with x1; :::; xk 2F

� Exploit error-free transformations when doing operations

� E�cient for k =2, k =3, and k =4 (cf. QD library by Bailey et al.)

� Muller�Popescu�Tang, ARITH 2016, �op-count� M(k)6 13
2
k2+ 45

2
k + 67

Separate treatment of mantissas and exponents

� Standard representation x =m 2e with m=m0+m1 2
¡p + ���+mk¡1 2

¡(k¡1)p

� Fixed-point arithmetic operations on the mantissas m

� Very e�cient for large k (cf. GMP and MPFR libraries)

� However: GMP and MPFR are currently not vectorized and very ine�cient for small k

� E�ciency for small and medium k ?



Approaches for multiple precision �oating point arithmetic 4/12

1 2 3 4 5 6 7 8 9 10 11 12

Notation: F is the set of hardware �oating point numbers

Floating point expansions

� Based on an exact representation x = x1+ ���+ xk with x1; :::; xk 2F

� Exploit error-free transformations when doing operations

� E�cient for k =2, k =3, and k =4 (cf. QD library by Bailey et al.)

� Muller�Popescu�Tang, ARITH 2016, �op-count� M(k)6 13
2
k2+ 45

2
k + 67

Separate treatment of mantissas and exponents

� Standard representation x =m 2e with m=m0+m1 2
¡p + ���+mk¡1 2

¡(k¡1)p

� Fixed-point arithmetic operations on the mantissas m

� Very e�cient for large k (cf. GMP and MPFR libraries)

� However: GMP and MPFR are currently not vectorized and very ine�cient for small k

� E�ciency for small and medium k ?

� SIMD-style vectorization?



Fixed-point arithmetic 5/12

1 2 3 4 5 6 7 8 9 10 11 12

Idea (vdH�Lecerf, ARITH 2015): use redundant representation with �nail bits�:

x = m 2e

m = m0+m1 2
¡p + ���+mk¡1 2

¡(k¡1)p

p = �¡ �

� � 4; suitable number of �nail bits�

mi 2 Z 2¡p

Thus: jmj< 2� and m2Z 2¡kp.

m0

m1 2
¡p

� p

� p

2¡2p2¡p1

� pm2 2
¡2p

2¡3p



E�cient non-normalized arithmetic ... 6/12

1 2 3 4 5 6 7 8 9 10 11 12

x0 y0

x0 y1

x1 y0

x0 y2

x1 y1

x2 y0

+

+

+



... followed by e�cient carry-normalization 7/12

1 2 3 4 5 6 7 8 9 10 11 12

m0

m1 2
¡p

� p

� p

2¡2p2¡p1

� pm2 2
¡2p

2¡3p



... followed by e�cient carry-normalization 7/12

1 2 3 4 5 6 7 8 9 10 11 12

m0

m1 2
¡p

� p

p

2¡2p2¡p1

pm2 2
¡2p

2¡3p

+

+



... followed by e�cient carry-normalization 7/12

1 2 3 4 5 6 7 8 9 10 11 12

m0

m1 2
¡p

� p

p

2¡2p2¡p1

pm2 2
¡2p

2¡3p



... followed by e�cient carry-normalization 7/12

1 2 3 4 5 6 7 8 9 10 11 12

m0

m1 2
¡p

� p

p

2¡2p2¡p1

pm2 2
¡2p

2¡3p

Operation counts

� Multiplication: 5
�k
2

�
+1=

5

2
k2¡ 5

2
k +1



... followed by e�cient carry-normalization 7/12

1 2 3 4 5 6 7 8 9 10 11 12

m0

m1 2
¡p

� p

p

2¡2p2¡p1

pm2 2
¡2p

2¡3p

Operation counts

� Multiplication: 5
�k
2

�
+1=

5

2
k2¡ 5

2
k +1

� Carry-normalization: 4 k ¡ 4



... followed by e�cient carry-normalization 7/12

1 2 3 4 5 6 7 8 9 10 11 12

m0

m1 2
¡p

� p

p

2¡2p2¡p1

pm2 2
¡2p

2¡3p

Operation counts

� Multiplication: 5
�k
2

�
+1=

5

2
k2¡ 5

2
k +1

� Carry-normalization: 4 k ¡ 4

� Total: 5

2
k2+ 3

2
k ¡ 3



... followed by e�cient carry-normalization 7/12

1 2 3 4 5 6 7 8 9 10 11 12

m0

m1 2
¡p

� p

p

2¡2p2¡p1

pm2 2
¡2p

2¡3p

Operation counts

� Multiplication: 5
�k
2

�
+1=

5

2
k2¡ 5

2
k +1

� Carry-normalization: 4 k ¡ 4

� Total: 5

2
k2+ 3

2
k ¡ 3

� Remember: 13
2
k2+ 45

2
k + 67



Back to �oating point arithmetic 8/12

1 2 3 4 5 6 7 8 9 10 11 12

Main problem: putting arguments under a common exponent (e.g. 0.7� 2¡7+ 0.8� 2¡12)



Back to �oating point arithmetic 8/12

1 2 3 4 5 6 7 8 9 10 11 12

Main problem: putting arguments under a common exponent (e.g. 0.7� 2¡7+ 0.8� 2¡12)

 how to shift mantissas e�ciently? (e.g. 0.8� 2¡12= 0.025� 2¡7)



Back to �oating point arithmetic 8/12

1 2 3 4 5 6 7 8 9 10 11 12

Main problem: putting arguments under a common exponent (e.g. 0.7� 2¡7+ 0.8� 2¡12)

 how to shift mantissas e�ciently? (e.g. 0.8� 2¡12= 0.025� 2¡7)

 how to perform �dot normalization�?



Back to �oating point arithmetic 8/12

1 2 3 4 5 6 7 8 9 10 11 12

Main problem: putting arguments under a common exponent (e.g. 0.7� 2¡7+ 0.8� 2¡12)

 how to shift mantissas e�ciently? (e.g. 0.8� 2¡12= 0.025� 2¡7)

 how to perform �dot normalization�?

Decomposition of a shift by s bits



Back to �oating point arithmetic 8/12

1 2 3 4 5 6 7 8 9 10 11 12

Main problem: putting arguments under a common exponent (e.g. 0.7� 2¡7+ 0.8� 2¡12)

 how to shift mantissas e�ciently? (e.g. 0.8� 2¡12= 0.025� 2¡7)

 how to perform �dot normalization�?

Decomposition of a shift by s bits

� as a long shift by �= bs /pc words



Back to �oating point arithmetic 8/12

1 2 3 4 5 6 7 8 9 10 11 12

Main problem: putting arguments under a common exponent (e.g. 0.7� 2¡7+ 0.8� 2¡12)

 how to shift mantissas e�ciently? (e.g. 0.8� 2¡12= 0.025� 2¡7)

 how to perform �dot normalization�?

Decomposition of a shift by s bits

� as a long shift by �= bs /pc words

� and a short shift by s 0= s ¡� p< p bits



Back to �oating point arithmetic 8/12

1 2 3 4 5 6 7 8 9 10 11 12

Main problem: putting arguments under a common exponent (e.g. 0.7� 2¡7+ 0.8� 2¡12)

 how to shift mantissas e�ciently? (e.g. 0.8� 2¡12= 0.025� 2¡7)

 how to perform �dot normalization�?

Decomposition of a shift by s bits

� as a long shift by �= bs /pc words

� and a short shift by s 0= s ¡� p< p bits

� This should be done using SIMD vector instructions



Back to �oating point arithmetic 8/12

1 2 3 4 5 6 7 8 9 10 11 12

Main problem: putting arguments under a common exponent (e.g. 0.7� 2¡7+ 0.8� 2¡12)

 how to shift mantissas e�ciently? (e.g. 0.8� 2¡12= 0.025� 2¡7)

 how to perform �dot normalization�?

Decomposition of a shift by s bits

� as a long shift by �= bs /pc words

� and a short shift by s 0= s ¡� p< p bits

� This should be done using SIMD vector instructions

Main design decisions to be made

� Work with arbitrary exponents (à la MPFR) or multiples of p (à la GMP)?



Back to �oating point arithmetic 8/12

1 2 3 4 5 6 7 8 9 10 11 12

Main problem: putting arguments under a common exponent (e.g. 0.7� 2¡7+ 0.8� 2¡12)

 how to shift mantissas e�ciently? (e.g. 0.8� 2¡12= 0.025� 2¡7)

 how to perform �dot normalization�?

Decomposition of a shift by s bits

� as a long shift by �= bs /pc words

� and a short shift by s 0= s ¡� p< p bits

� This should be done using SIMD vector instructions

Main design decisions to be made

� Work with arbitrary exponents (à la MPFR) or multiples of p (à la GMP)?

� Numbers in an SIMD vector share the same exponent or not?



long SIMD shifts 9/12

1 2 3 4 5 6 7 8 9 10 11 12

Idea: any shift by �=�0+�1 2+ ���+�`¡1 2
`¡1 words with �i 2f0; 1g

decomposes as ` special shifts by �i 2i 2f0; 2i g words (done using blend instruction)

Shift by �0 �1 �2
m0;0 m0;1 m0;2 m0;3 m0;4 m0;5 m0;6 m0;7 3 1 1 0

m1;0 m1;1 m1;2 m1;3 m1;4 m1;5 m1;6 m1;7 2 0 1 0

m2;0 m2;1 m2;2 m2;3 m2;4 m2;5 m2;6 m2;7 5 1 0 1

m3;0 m3;1 m3;2 m3;3 m3;4 m3;5 m3;6 m3;7 11 1 1 1

m4;0 m4;1 m4;2 m4;3 m4;4 m4;5 m4;6 m4;7 0 0 0 0

m5;0 m5;1 m5;2 m5;3 m5;4 m5;5 m5;6 m5;7 4 0 0 1

m6;0 m6;1 m6;2 m6;3 m6;4 m6;5 m6;6 m6;7 4 0 0 1

m7;0 m7;1 m7;2 m7;3 m7;4 m7;5 m7;6 m7;7 6 0 1 1

Operation count: k log2 k



long SIMD shifts 9/12

1 2 3 4 5 6 7 8 9 10 11 12

Idea: any shift by �=�0+�1 2+ ���+�`¡1 2
`¡1 words with �i 2f0; 1g

decomposes as ` special shifts by �i 2i 2f0; 2i g words (done using blend instruction)

Shift by �0 �1 �2
0 m0;0 m0;1 m0;2 m0;3 m0;4 m0;5 m0;6 3 1 1 0

m1;0 m1;1 m1;2 m1;3 m1;4 m1;5 m1;6 m1;7 2 0 1 0

0 m2;0 m2;1 m2;2 m2;3 m2;4 m2;5 m2;6 5 1 0 1

0 m3;0 m3;1 m3;2 m3;3 m3;4 m3;5 m3;6 11 1 1 1

m4;0 m4;1 m4;2 m4;3 m4;4 m4;5 m4;6 m4;7 0 0 0 0

m5;0 m5;1 m5;2 m5;3 m5;4 m5;5 m5;6 m5;7 4 0 0 1

m6;0 m6;1 m6;2 m6;3 m6;4 m6;5 m6;6 m6;7 4 0 0 1

m7;0 m7;1 m7;2 m7;3 m7;4 m7;5 m7;6 m7;7 6 0 1 1

Operation count: k log2 k



long SIMD shifts 9/12

1 2 3 4 5 6 7 8 9 10 11 12

Idea: any shift by �=�0+�1 2+ ���+�`¡1 2
`¡1 words with �i 2f0; 1g

decomposes as ` special shifts by �i 2i 2f0; 2i g words (done using blend instruction)

Shift by �0 �1 �2
0 0 0 m0;0 m0;1 m0;2 m0;3 m0;4 3 1 1 0

0 0 m1;0 m1;1 m1;2 m1;3 m1;4 m1;5 2 0 1 0

0 m2;0 m2;1 m2;2 m2;3 m2;4 m2;5 m2;6 5 1 0 1

0 0 0 m3;0 m3;1 m3;2 m3;3 m3;4 11 1 1 1

m4;0 m4;1 m4;2 m4;3 m4;4 m4;5 m4;6 m4;7 0 0 0 0

m5;0 m5;1 m5;2 m5;3 m5;4 m5;5 m5;6 m5;7 4 0 0 1

m6;0 m6;1 m6;2 m6;3 m6;4 m6;5 m6;6 m6;7 4 0 0 1

0 0 m7;0 m7;1 m7;2 m7;3 m7;4 m7;5 6 0 1 1

Operation count: k log2 k



long SIMD shifts 9/12

1 2 3 4 5 6 7 8 9 10 11 12

Idea: any shift by �=�0+�1 2+ ���+�`¡1 2
`¡1 words with �i 2f0; 1g

decomposes as ` special shifts by �i 2i 2f0; 2i g words (done using blend instruction)

Shift by �0 �1 �2
0 0 0 m0;0 m0;1 m0;2 m0;3 m0;4 3 1 1 0

0 0 m1;0 m1;1 m1;2 m1;3 m1;4 m1;5 2 0 1 0

0 0 0 0 0 m2;0 m2;1 m2;2 5 1 0 1

0 0 0 0 0 0 0 m3;0 11 1 1 1

m4;0 m4;1 m4;2 m4;3 m4;4 m4;5 m4;6 m4;7 0 0 0 0

0 0 0 0 m5;0 m5;1 m5;2 m5;3 4 0 0 1

0 0 0 0 m6;0 m6;1 m6;2 m6;3 4 0 0 1

0 0 0 0 0 0 m7;0 m7;1 6 0 1 1

Operation count: k log2 k



long SIMD shifts 9/12

1 2 3 4 5 6 7 8 9 10 11 12

Idea: any shift by �=�0+�1 2+ ���+�`¡1 2
`¡1 words with �i 2f0; 1g

decomposes as ` special shifts by �i 2i 2f0; 2i g words (done using blend instruction)

Shift by �0 �1 �2
0 0 0 m0;0 m0;1 m0;2 m0;3 m0;4 3 1 1 0

0 0 m1;0 m1;1 m1;2 m1;3 m1;4 m1;5 2 0 1 0

0 0 0 0 0 m2;0 m2;1 m2;2 5 1 0 1

0 0 0 0 0 0 0 m3;0 11 1 1 1

m4;0 m4;1 m4;2 m4;3 m4;4 m4;5 m4;6 m4;7 0 0 0 0

0 0 0 0 m5;0 m5;1 m5;2 m5;3 4 0 0 1

0 0 0 0 m6;0 m6;1 m6;2 m6;3 4 0 0 1

0 0 0 0 0 0 m7;0 m7;1 6 0 1 1

Operation count: k log2 k



short SIMD shifts 10/12

1 2 3 4 5 6 7 8 9 10 11 12

Similar to carry-normalization

Operation count: 4 k ¡ 1



short SIMD shifts 10/12

1 2 3 4 5 6 7 8 9 10 11 12

Similar to carry-normalization

Operation count: 4 k ¡ 1

Note

One addition r = x + y requires

� One general right shift for x (put under common exponent)

� One general right shift for y (put under common exponent)

� One �xed-point addition

� One general left shift for r (dot normalization)



Operation counts 11/12

1 2 3 4 5 6 7 8 9 10 11 12

Base 2

k 2 3 4 5 6 7 8 9 10 11 12

� Individual exponents 51 84 108 150 177 204 231 288 318 348 378
Shared exponents 55 79 103 127 151 175 199 223 247 271 295

� Individual exponents 31 35 54 78 107 141 180 224 273 327 386
Shared exponents 32 36 55 79 108 142 181 225 274 328 387

� FP expansions 138 193 261 342 436 543 663 796 942 1101 1273

Base 2p

k ¡ 1 2 3 4 5 6 7 8 9 10 11 12

� Individual exponents 31 49 67 92 107 122 147 183 201 219 237
Shared exponents 31 43 55 67 79 91 103 115 127 139 151

� Individual exponents 40 61 87 118 154 195 241 292 348 409 475
Shared exponents 41 62 88 119 155 196 242 293 349 410 476

� FP expansions 138 193 261 342 436 543 663 796 942 1101 1273



Conclusion and perspectives 12/12

1 2 3 4 5 6 7 8 9 10 11 12

Conclusion

� ARITH 2015: our multiple precision arithmetic is very e�cient for �xed-point arithmetic

We were able to achieve �6 2 for practical FFT computations

This was really our best case situation



Conclusion and perspectives 12/12

1 2 3 4 5 6 7 8 9 10 11 12

Conclusion

� ARITH 2015: our multiple precision arithmetic is very e�cient for �xed-point arithmetic

We were able to achieve �6 2 for practical FFT computations

This was really our best case situation

� ARITH 2017: we expect our approach to outperform �oating point expansions for k > 5

This holds for any of the known approaches: Priest, Bailey, Muller�Popescu�Tang, ...

Although this is really our worst case situation



Conclusion and perspectives 12/12

1 2 3 4 5 6 7 8 9 10 11 12

Conclusion

� ARITH 2015: our multiple precision arithmetic is very e�cient for �xed-point arithmetic

We were able to achieve �6 2 for practical FFT computations

This was really our best case situation

� ARITH 2017: we expect our approach to outperform �oating point expansions for k > 5

This holds for any of the known approaches: Priest, Bailey, Muller�Popescu�Tang, ...

Although this is really our worst case situation

Perspectives

� To make better use of our arithmetic, one should implement dedicated functions for

� Sums x1+ ���+ xt of several numbers

� Important speci�c operations: FFT, matrix multiplication, etc.

� Etc.

� Can compilers use such optimized routines automatically when possible?


