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e For small k, we have M(k) = a k? for some constant «.

o For large k, we have M(k) = O(k log k 8'°8"%): Harvey—vdH-Lecerf, J. of Complexity 2016.

e For 10 < k <1000, intermediate regimes apply: Karatsuba, Toom—Cook, etc.



The challenge: fast multiple precision arithmetic for scientific computation

Theoretical efficiency of multiple precision floating point arithmetic
e Mainly boils down to the complexity M(k) of k-“word” multiplication.

e For small k, we have M(k) = a k? for some constant «.

o For large k, we have M(k) = O(k log k 8'°8"%): Harvey—vdH-Lecerf, J. of Complexity 2016.

e For 10 < k <1000, intermediate regimes apply: Karatsuba, Toom—Cook, etc.

How does this translate in practice?



The challenge: fast multiple precision arithmetic for scientific computation

Theoretical efficiency of multiple precision floating point arithmetic
e Mainly boils down to the complexity M(k) of k-“word” multiplication.

e For small k, we have M(k) = a k? for some constant «.

o For large k, we have M(k) = O(k log k 8'°8"%): Harvey—vdH-Lecerf, J. of Complexity 2016.

e For 10 < k <1000, intermediate regimes apply: Karatsuba, Toom—Cook, etc.

How does this translate in practice?

e How to minimize « for small k<107



The challenge: fast multiple precision arithmetic for scientific computation

Theoretical efficiency of multiple precision floating point arithmetic
e Mainly boils down to the complexity M(k) of k-“word” multiplication.

e For small k, we have M(k) = a k? for some constant «.

o For large k, we have M(k) = O(k log k 8'°8"%): Harvey—vdH-Lecerf, J. of Complexity 2016.

e For 10 < k <1000, intermediate regimes apply: Karatsuba, Toom—Cook, etc.

How does this translate in practice?
e How to minimize « for small k<107

e How does o depend on the architecture?



The challenge: fast multiple precision arithmetic for scientific computation

Theoretical efficiency of multiple precision floating point arithmetic
e Mainly boils down to the complexity M(k) of k-“word” multiplication.
e For small k, we have M(k) = a k? for some constant «.

o For large k, we have M(k) = O(k log k 8'°8"%): Harvey—vdH-Lecerf, J. of Complexity 2016.

e For 10 < k <1000, intermediate regimes apply: Karatsuba, Toom—Cook, etc.

How does this translate in practice?
e How to minimize « for small k<107
e How does o depend on the architecture?

e What about SIMD-style vectorization?



The challenge: fast multiple precision arithmetic for scientific computation

Theoretical efficiency of multiple precision floating point arithmetic

Mainly boils down to the complexity M(k) of k-"“word” multiplication.
For small k, we have M(k)~ o k? for some constant «.

For large k, we have M(k) = O(k log k 8'°8"%): Harvey—vdH-Lecerf, J. of Complexity 2016.

For 10 < k < 1000, intermediate regimes apply: Karatsuba, Toom—Cook, etc.

How does this translate in practice?

How to minimize « for small k <107
How does o depend on the architecture?
What about SIMD-style vectorization?

To what extent do additions and subtractions matter?
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The issues
e What are the available word sizes 11 in bits?

e What is the available SIMD width w for the best word size 117
Efficiency o< p?w

e Is (efficient) hardware integer arithmetic available? If so,

Efficiencyy ~ <%)2 Efficiencyr =~ 1.5 Efficiencyp.
Currently
e =53 and w =4 on AVX2-enabled processors. No efficient 64-bit integer arithmetic.
e =24 and 16 < w <64 on cheap GPUs. No efficient 32-bit integer arithmetic.

e ;=53 and 16 <w <64 on expensive GPUs. No efficient 64-bit integer arithmetic.
e FGPAs: not considered here.



Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers



Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F



Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions
e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F

e Exploit error-free transformations when doing operations



Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)



Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—-Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67



Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—-Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67

Separate treatment of mantissas and exponents

e Standard representation x = m2° with m=mg+ my2 P+ -+ my_, 2~ k=1p



Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—-Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67

Separate treatment of mantissas and exponents
e Standard representation x = m2€ with m=mg+ mi2 P+ -+ my_1 p—(k=1)p

e Fixed-point arithmetic operations on the mantissas m



Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—-Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67

Separate treatment of mantissas and exponents
e Standard representation x = m2¢ with m=mg+my2 P+ -+ my_1 2 k=1Dp
e Fixed-point arithmetic operations on the mantissas m

e \Very efficient for large k (cf. GMP and MPFR libraries)



Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—-Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67

Separate treatment of mantissas and exponents

e Standard representation x = m2¢ with m=mg+my2 P+ -+ my_1 2 k=1Dp
e Fixed-point arithmetic operations on the mantissas m

e \Very efficient for large k (cf. GMP and MPFR libraries)

e However: GMP and MPFR are currently not vectorized and very inefficient for small k



Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions
e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—-Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67

Separate treatment of mantissas and exponents

e Standard representation x = m2¢ with m=mg+my2 P+ -+ my_1 2 k=1Dp
e Fixed-point arithmetic operations on the mantissas m

e \Very efficient for large k (cf. GMP and MPFR libraries)

e However: GMP and MPFR are currently not vectorized and very inefficient for small k

e Efficiency for small and medium k?



Approaches for multiple precision floating point arithmetic 4/12

Notation: IF is the set of hardware floating point numbers

Floating point expansions

e Based on an exact representation x = x; + -+ + xx with xq,...,x, € F
e Exploit error-free transformations when doing operations

e Efficient for k=2, k=3, and k=4 (cf. QD library by Bailey et al.)

e Muller-Popescu—Tang, ARITH 2016, “op-count” M(k) <§k2+4—25k+67

Separate treatment of mantissas and exponents

e Standard representation x = m2¢ with m=mg+my2 P+ -+ my_1 2 (k=1Dp

e Fixed-point arithmetic operations on the mantissas m

e \Very efficient for large k (cf. GMP and MPFR libraries)

e However: GMP and MPFR are currently not vectorized and very inefficient for small k
e Efficiency for small and medium k7

e SIMD-style vectorization?
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|dea (vdH-Lecerf, ARITH 2015): use redundant representation with “nail bits":

x = m?2°

m = mpg+m2 P+ +me_12 k-Dp
p = p—29

0 = 4, suitable number of “nail bits"
m;, € Z2°P

Thus: [m| <2% and me Z 2P,

1 2—P 2—2p 2—|3p
| | |
i | |
my2 P : ) : P :
| | i
my2 2P | | 0 | p
| | |
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Efficient non-normalized arithmetic ...




... followed by efficient carry-normalization

i e
myg | § | p | |
| | |
my 2P : ) : P :
| | | |
mp272P | 0 | P g
| | | |



... followed by efficient carry-normalization
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mo 2—2p

Operation counts
e Multiplication: 5(§>+1:gk2—gk+1
e Carry-normalization: 4 k — 4

e Total: gk2+gk—3




... followed by efficient carry-normalization

mo )

my2— P

mo 2—2p

Operation counts
e Multiplication: 5(§>+1:gk2—gk+1
e Carry-normalization: 4 k — 4
549 3
° TotaI.Ek +5k—3

e Remember: §k2+%k+67
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Main problem: putting arguments under a common exponent  (e.g. 0.7 x 277 +0.8 x 2712)
~» how to shift mantissas efficiently? (e.g. 0.8 x2712=0.025 x 27)

~ how to perform “dot normalization”?

Decomposition of a shift by s bits
e as a long shift by o =|s/p| words
e and a short shift by s"=s — o p < p bits

e This should be done using SIMD vector instructions

Main design decisions to be made

e Work with arbitrary exponents (4 /la MPFR) or multiples of p (a la GMP)?

e Numbers in an SIMD vector share the same exponent or not?
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Idea: any shift by 0 =o¢+ 012+ - +0¢_1 271 words with o; € {0,1}
decomposes as / special shifts by ;2" € {0,2'} words (done using blend instruction)
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Idea: any shift by 0 =o¢+ 012+ - +0¢_1 271 words with o; € {0,1}
decomposes as / special shifts by ;2" € {0,2'} words (done using blend instruction)

Shlft by O 01 02

0 0 0 Moo | Mo,1 | Mo2 | Mo3 | Mo.a 3 1110
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Similar to carry-normalization

Operation count: 4 k —1

Note
One addition r = x + y requires
e One general right shift for x (put under common exponent)

e One general right shift for y (put under common exponent)

e One fixed-point addition

e One general left shift for r (dot normalization)
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Base 2

k 2| 3| 4| 5| 6 7| 8| 9| 10| 11| 12
Individual exponents| 51| 841|108 |150|177|204|231|288|318| 348 | 378
Shared exponents 55| 791|103 (127 |151|175|199 (223|247 | 271 | 295
Individual exponents| 31| 35| 54| 78|107|141|180|224|273| 327 | 386

" I'Shared exponents 32| 36| 55| 79108 (142|181 (225|274 | 328 | 387
x | FP expansions 138193261 342|436 [543 |663|796|942 (1101|1273
Base 2°

k—1 2| 3| 4| 5| 6 7| 8| 9| 10 11 12
n Individual exponents| 31| 49| 67| 92|107|122|147|183|201| 219 | 237

Shared exponents 31| 43| 55| 67| 79| 91|103|115|127| 139| 151
Individual exponents| 40| 61| 87|118|154|195|241|292|348| 409 | 475
Shared exponents 41| 62| 88|119|155(196|242|293 (349 | 410| 476
x | FP expansions 138 193|261 [ 342|436 [543 663|796 |942 (1101|1273
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Conclusion
e ARITH 2015: our multiple precision arithmetic is very efficient for fixed-point arithmetic
We were able to achieve ov <2 for practical FFT computations

This was really our best case situation
e ARITH 2017: we expect our approach to outperform floating point expansions for k> 5
This holds for any of the known approaches: Priest, Bailey, Muller—Popescu-Tang, ...

Although this is really our worst case situation

Perspectives

e To make better use of our arithmetic, one should implement dedicated functions for
o Sums x; + - + x; of several numbers
o Important specific operations: FFT, matrix multiplication, etc.
o Etc.

e Can compilers use such optimized routines automatically when possible?



